Какая мышь лучше - лазерная или оптическая? Какой тип сенсора мыши лучше, лазерный или оптический? Оптическая мышка.


Каждый человек, проводящий время за компьютером, пользуется таким манипулятором, как мышь. Данный орган управления задействуется при работе с документами, при веб-сёрфинге, а также во время прохождения игр. Нередко случается так, что купленная модель мыши (оптическая или лазерная) не удовлетворяет запросы владельца, из-за чего ему приходится тратить деньги на другой аксессуар. В предлагаемом обзоре мы попробуем узнать, чем оптическая мышка отличается от лазерной, какая из этих разновидностей лучше и в каких случаях нужно отдавать предпочтение тому или иному типу. Итак, приступим.

Особенности конструкции оптической и лазерной мыши

Возможно, кого-то это удивит, но рассматриваемый орган управления (в обоих случаях) является своеобразной фотокамерой. Однако данные камеры захватывают не лица, а изображения поверхности, на которой их размещают (стол, коврик, диван и так далее). После захвата полученные сведения преобразуются в электронные данные, благодаря которым отслеживается текущее местонахождение периферии на конкретной поверхности. Проще говоря, такие миниатюрные камеры, которые мы часто держим в руке, отслеживают свои координаты по осям X и Y.

В конструкцию каждой современной мыши входит три главных элемента:

  1. Крошечная камера, имеющая низкое разрешение (или так называемый CMOS-сенсор).
  2. Пара объективов.
  3. Определенный источник света.
Принцип функционирования лазерных и оптических мышей тоже почти идентичен:
  1. Световой источник подаёт луч на поверхность, располагающуюся под ним. Двигаясь в заданном направлении, луч проходит через один из объективов.
  2. Достигая преграды, световой поток отражается от неё и попадает на другой объектив.
  3. Последний элемент увеличивает свет, после чего происходит его передача на датчик CMOS.
  4. Датчик осуществляет сбор полученного света и его последующее преобразование в электроток.
  5. После этого аналоговые сведения преобразуются в значения 1 и 0. Таким образом, происходит захват как минимум 10 тысяч цифровых изображений ежесекундно.
  6. Потом захваченные изображения сравниваются в целях определения точного местонахождения манипулятора.
  7. Итоговые данные переправляются на компьютер, который отвечает уже за размещение курсора в конкретной области монитора. Сведения по размещению мыши передаются каждую 1/8 миллисекунды.
Как видно, у двух типов этих манипуляторов много общего, но тогда возникает закономерный вопрос: в чем разница между лазерной и оптической мышкой. А разница заключается в типе света, который подает источник:
  1. В оптических мышках применяется светодиод красного, зелёного или синего цвета. Излучаемый свет проходит через все этапы, описанные выше.
  2. Лазерные мышки , как нетрудно догадаться, используют полупроводниковый лазер в инфракрасном диапазоне. Отсюда следует вывод, что исходящий свет невидим для человеческого глаза. Алгоритм работы таких моделей очень похож на функционирование оптических аналогов, вот только сенсор настроен на улавливание не всего светового потока, а соответствующей длины его волны.
Наиболее важным условием для быстрого и правильного определения месторасположения мыши является анализ неровностей поверхности. Вот тут проявляется первое весомое преимущество лазерных устройств. Дело в том, что светодиод оптических моделей проникает только в верхние слои преграды. На стандартных поверхностях (стол, коврик) этого достаточно. Но если разместить мышь на стекле, гладкой столешнице или на ноге, её отзывчивость упадёт в разы. Что касается ИК-лазера, то он проникает гораздо глубже в текстуру преграды. Таким образом, обеспечивается надлежащая передача данных при нахождении манипулятора на любой поверхности.

Ещё одним немаловажным фактором является разрешающая способность устройств - она обозначается аббревиатурой dpi. От разрешающей способности напрямую зависит чувствительность гаджета. В принципе, для удобной работы с ПК достаточно значения в 800 dpi. Но что же нам могут предложить два конкурирующих вида мышек?

  1. Оптические мыши как раз и располагают необходимым минимумом в 800 dpi. Разрешающая способность на самых дорогих устройствах такого типа достигает 1200 dpi.
  2. Лазерные модели могут «похвастаться» более внушительными способностями. В среднем, рассматриваемое значение на них составляет 2000 dpi. На флагманских моделях данный показатель превышает отметку в 4000 dpi. Ну а настоящими «богами» своей категории являются модели с разрешающей способностью в 5700 dpi.

Как видно, лазер обладает большей продуктивностью, нежели светодиод. Кроме того, есть ещё ряд отличий, о которых мы поговорим далее.

Второстепенные отличительные черты между оптическими и лазерными мышками


Здесь, по сути, можно выделить всего три момента, но каждый из них способен повлиять на итоговый выбор покупателя:
  1. Работоспособность при возникновении зазора между девайсом и поверхностью. В этом плане оптические аналоги полностью переигрывают своих лазерных конкурентов. Если оптическую мышь водить над столом примерно на сантиметровой высоте, курсор на мониторе тоже будет перемещаться. Но если вы попробуете проделать аналогичное действие с лазерным гаджетом, курсор останется на месте. Во многом это объясняется тем, что девайсы второй группы направлены на глубинный анализ рабочей поверхности. Если их приподнять, такой анализ осуществляться не будет, а значит - мышь не сможет определить своё местоположение на плоскости.
  2. Энергопотребление. Этот, казалось бы, важный параметр относится к категории вспомогательных из-за того, что он имеет весомое значение только при использовании беспроводных моделей. Здесь преимущество опять переходит к лазерным устройствам. Для работы ИК-излучателя требуется гораздо меньше энергии, чем для яркого светодиода. Таким образом, батарейки на лазерных гаджетах будут садиться гораздо дольше, а это сэкономит деньги.
  3. Подсветка. Многие владельцы оптических мышек знают, что светодиод горит достаточно ярко. Во время работы данное свечение можно даже считать приятным украшением, вот только есть и другая сторона медали. Сегодня многие пользователи ПК не выключают свои машины на ночь, а переводят их в режим ожидания. И все бы ничего, но при таком условии яркое свечение остается. Более того, некоторые оптические модели продолжают светить даже после полного отключения ПК (когда сетевой фильтр остается работать). Отсюда выходит сразу два минуса: свечение может мешать уснуть, а на поддержание его работы тратится дополнительная энергия, что непременно отразится в платежке за электричество (конечно, прибавка будет не такой уж большой, но факт остается фактом). В случае с лазерными аналогами такой проблемы нет. Эти мышки не выдают никакого свечения, а при переводе машины в режим ожидания они почти не потребляют электроэнергию.

Плюсы и минусы лазерных и оптических мышек


У оптических мышек можно выделить всего две сильные стороны:
  1. Более низкую цену в сравнении с лазерными конкурентами.
  2. Сохранение работоспособности при возникновении зазора между источником света и плоскостью.
А вот недостатков у таких устройств достаточно много:
  1. Повышенные требования к типу рабочей поверхности. Для этих моделей подойдёт только специальный компьютерный стол или же стол с ковриком. На зеркальной, стеклянной или глянцевой плоскости эти аппараты работать не будут или будут, но очень плохо.
  2. Более низкая точность в определении месторасположения. Это опять-таки связано с типом света и алгоритмом его обработки. Поскольку светодиод проникает только в наружные слои плоскости, месторасположение гаджета определяется с погрешностями. Если при веб-серфинге или редактировании документов такой изъян малозаметен, то во время игры данные неточности могут стать «фатальными» для геймера.
  3. Более низкая чувствительность , обусловленная не очень высокими показателями разрешающей способности.
  4. Высокое энергопотребление при работе светодиодной подсветки. Из-за этого фактора на беспроводных моделях будут быстро садиться батарейки. Если же применять проводной девайс, он будет потреблять гораздо больше электричества. И не стоит забывать о том, что свечение может мешать уснуть, если оставлять ПК в режиме ожидания на ночь.
У лазерных мышек ситуация полностью зеркальная. Они имеют такие преимущества:
  1. Возможность работы на любых плоскостях.
  2. Высокую точность в определении местонахождения мыши.
  3. Повышенную чувствительность.
  4. Экономное энергопотребление и отсутствие отвлекающей подсветки.
Минусы вполне очевидные:
  1. Более высокая стоимость.
  2. Прекращение нормальной работы при возникновении минимального зазора между источником ИК-лазера и поверхностью.
Кроме того, есть один специфический изъян, который может сформироваться из двух плюсов: работы на любой поверхности и высокой чувствительности. Дело в том, что если поставить лазерную мышь на необычную поверхность (стеклянный стол, мягкую кровать, на ногу поверх одежды), она начнет обрабатывать много лишней информации. Из-за этого курсор может начать дергаться, даже когда вы не трогаете манипулятор. При просмотре интернет-ресурсов этот изъян будет малозначимым, а вот в игре или во время рисования в Adobe Illustrator такие дергания могут негативно отразиться на результате (например, на битве с боссом, которому надо стрелять в маленькую уязвимую область). Справедливости ради стоит отметить, что рассмотренный недостаток легко устраняется. Необходимо или поставить мышь на нормальную плоскость, или понизить её разрешающую способность.

Какая же мышка лучше: лазерная или оптическая?


Несмотря на, казалось бы, тотальное превосходство лазерных моделей, их оптические «коллеги» тоже могут быть удобными и практичными. Давайте узнаем, для каких конкретно случаев подходит каждый из рассматриваемых типов.
  1. Оптические мышки подойдут офисным работникам, которые сидят за специализированными компьютерными столами. Такие устройства прекрасно выполнят свои основные функции при работе с документами или при изучении информации в интернете. Кроме того, оптические гаджеты подойдут некоторым геймерам. Не ярым игроманам, участвующим в крупных кибер-спортивных соревнованиях, а тем, кто играет в целях развлечения по пару часов в день. Для указанных случаев выбор данного типа мышки будет оправдан ещё и ценой. Согласитесь, зачем покупать дорогущий аксессуар для работы в Microsoft Office или для того, чтобы пару раз в неделю пострелять немцев в Call of Duty.
  2. Лазерные мышки в большей степени ориентированы на владельцев ноутбуков. Именно эти люди часто работают в кафе, в аэропортах или сидя на диване. В данных ситуациях лазерные аналоги, способные функционировать на любом типе поверхности, станут незаменимыми помощниками. Также, они подойдут ярым геймерам, участвующим в соревнованиях. Когда уровень двух игроков примерно равный, именно от скорости и точности работы мыши будет зависеть исход виртуального поединка. И вот здесь лазерные модели принесут куда больше пользы, нежели оптические.
Что касается дизайна лазерных или оптических мышек, то здесь оба вида примерно равны. Сегодня производители выпускают достаточно красивые модели, которые приятно и удобно держать в руке, так что выбор придётся делать на основе личных предпочтений по цвету, форме, количеству кнопок и так далее.

Стоимость оптических и лазерных мышек, выводы


Цена оптических мышек в России начинается от 200 рублей. За лазерные модели придётся заплатить как минимум 600 рублей, хотя лучше ориентироваться на девайсы, которые стоят 2–3 тысячи (чтобы точно получить качественный продукт).


Ну что же, вот мы и попытались разобраться в том, какая мышка лучше - оптическая или лазерная. Подводя итоги, можно сказать, что второй тип гаджетов превосходит первый почти по всем показателям, однако его покупка оправдана не всегда. Простым пользователям ПК вполне подойдут оптические устройства по средней цене. Но тем, кто часто работает за ноутбуком в разных местах или участвует в кибер-спортивных соревнованиях, лучше ориентироваться на лазерные манипуляторы, причем недешёвые.

омпьютерная мышь – скорей всего является самым массовым и широко популярным компьютерным девайсом. С течением времени, конструкция ее претерпела серьезные технологические изменения. Уже давно забыты мыши с прямым приводом из 2-х перпендикулярных металлических колес. Сегодня актуальны оптические и лазерные устройства. Какая компьютерная мышка лучше - лазерная или оптическая? сейчас попытаемся разобраться в различиях этих 2-х типов манипуляторов.

Виды поверхностей и работа мышек на них

Выбирая современную компьютерную мышь, не нужно забывать и о таком важном аспекте, как покрытие, на котором будет она работать. Оптическая мышка является совсем неприхотливой в этом вопросе и будет отлично работать в любых условиях, помимо зеркальной поверхности.

Лазерные мышки являются достаточно прихотливыми к условиям. Оптимальным вариантом для работы с таким помощником будет коврик и не простой, а специальный коврик. На не подходящей поверхности курсор этого манипулятора будет дрожать, часто дергаться.

Что лучше?

Это зависит от того или другого приложения и окружающей среды. Если вы обратите внимание на марку Logitech G, вы увидите, что там компания в основном фокусируется на светодиодных мышах, когда речь заходит о разных компьютерных играх. Тем не менее, у этого бренда есть и лазерные мыши, тот же Logitech предлагает небольшую часть устройств с лазером, которые ориентированы на работу с офисными приложениями.

Другая фирма-изготовитель Razer, предпочитает больше лазерную технологию, потому что она предлагает наиболее высокую чувствительность в играх.

Стоимость разных видов мышек

Выбор современных компьютерных мышек просто очень велик, и если отбросить в сторону все неудачные модели, а также неизвестные фирмы-изготовители, то можно быстро определиться с ценовой политикой для разных задач. Выбирая мышку для ежедневной или офисной работы, выложить придется от 100 до 180 грн.

Плюсы и минусы оптической мыши

Оптическая мышь обладает такими преимуществами:

  • небольшая цена;
  • нечувствительность к неровной поверхности.

Минусы девайса:

  • не любит зеркальных, стеклянных покрытий;
  • отличается небольшой точностью и скоростью;
  • небольшая чувствительность;
  • раздражающая подсветка;
  • большое энергопотребление.

Достоинства и недостатки лазерной мышки

Плюсы устройства:

  • возможность выполнения функций на разных покрытиях;
  • увеличенные точность и скорость;
  • значительная чувствительность;
  • регулировка разрешения;
  • не имеется подсветки;
  • малая энергозатратность;
  • разные дополнительные возможности.

Минусы устройства:

  • дорого стоит;
  • чувствительность к неровности разных поверхностей.

Подведение итогов

Подводя итоги можно уже ответить на вопрос: "Оптическая мышь или лазерная – что является лучше?" Учитывая все вышеизложенное, лучшим считается именно второй вариант. Для домашнего использования лазерные мыши можно назвать более удобными. При этом существует огромный ассортимент моделей в таких городах как Горловка, Макеевка, Донецк, и подобрать подходящий вариант в нашем интернет магазине не является проблемой.

В этой статье мы рассмотрим принципы работы сенсоров оптических мышей, прольем свет на историю их технологического развития, а также развенчаем некоторые мифы, связанные с оптическими «грызунами».

Кто тебя выдумал…

Привычные для нас сегодня оптические мыши ведут свою родословную с 1999 года, когда в массовой продаже появились первые экземпляры таких манипуляторов от Microsoft, а через некоторое время и от других производителей. До появления этих мышей, да и еще долго после этого, большинство массовых компьютерных «грызунов» были оптомеханическими (перемещения манипулятора отслеживались оптической системой, связанной с механической частью - двумя роликами, отвечавшими за отслеживание перемещения мыши вдоль осей × и Y; эти ролики, в свою очередь, вращались от шарика, перекатывающегося при перемещении мыши пользователем). Хотя встречались и чисто оптические модели мышей, требовавшие для своей работы специального коврика. Впрочем, такие устройства встречались не часто, да и сама идея развития подобных манипуляторов постепенно сошла на нет.

«Вид» знакомых нам нынче массовых оптических мышек, базирующихся на общих принципах работы, был «выведен» в исследовательских лабораториях всемирно известной корпорации Hewlett-Packard. Точнее, в ее подразделении Agilent Technologies, которое только сравнительно недавно полностью выделилось в структуре корпорации НР в отдельную компанию. На сегодняшний день Agilent Technologies, Inc. - монополист на рынке оптических сенсоров для мышей, никакие другие компании такие сенсоры не разрабатывают, кто бы и что не говорил вам об эксклюзивных технологиях IntelliEye или MX Optical Engine . Впрочем, предприимчивые китайцы уже научились «клонировать» сенсоры Agilent Technologies, поэтому, покупая недорогую оптическую мышь, вы вполне можете стать владельцем «левого» сенсора.

Откуда берутся видимые отличия в работе манипуляторов, мы выясним чуть позднее, а пока позвольте приступить к рассмотрению базовых принципов работы оптических мышей, точнее их систем слежения за перемещением.

Как «видят» компьютерные мыши

В этом разделе мы изучим базовые принципы работы оптических систем слежения за перемещением, которые используются в современных манипуляторах типа мышь.

Итак, «зрение» оптическая компьютерная мышь получает благодаря следующему процессу. С помощью светодиода, и системы фокусирующих его свет линз, под мышью подсвечивается участок поверхности. Отраженный от этой поверхности свет, в свою очередь, собирается другой линзой и попадает на приемный сенсор микросхемы - процессора обработки изображений. Этот чип, в свою очередь, делает снимки поверхности под мышью с высокой частотой (кГц). Причем микросхема (назовем ее оптический сенсор) не только делает снимки, но сама же их и обрабатывает, так как содержит две ключевых части: систему получения изображения Image Acquisition System (IAS) и интегрированный DSP процессор обработки снимков.

На основании анализа череды последовательных снимков (представляющих собой квадратную матрицу из пикселей разной яркости), интегрированный DSP процессор высчитывает результирующие показатели, свидетельствующие о направлении перемещения мыши вдоль осей × и Y, и передает результаты своей работы вовне по последовательному порту.

Если мы посмотрим на блок-схему одного из оптических сенсоров, то увидим, что микросхема состоит из нескольких блоков, а именно:

  • основной блок, это, конечно же, Image Processor - процессор обработки изображений (DSP) со встроенным приемником светового сигнала (IAS);
  • Voltage Regulator And Power Control - блок регулировки вольтажа и контроля энергопотребления (в этот блок подается питание и к нему же подсоединен дополнительный внешний фильтр напряжения);
  • Oscillator - на этот блок чипа подается внешний сигнал с задающего кварцевого генератора, частота входящего сигнала порядка пары десятков МГц;
  • Led Cоntrоl - это блок управления светодиодом, с помощью которого подсвечивается поверхность под мышью;
  • Serial Port - блок передающий данные о направлении перемещения мыши вовне микросхемы.

Некоторые детали работы микросхемы оптического сенсора мы рассмотрим чуть далее, когда доберемся к самому совершенному из современных сенсоров, а пока вернемся к базовым принципам работы оптических систем слежения за перемещением манипуляторов.

Нужно уточнить, что информацию о перемещении мыши микросхема оптического сенсора передает через Serial Port не напрямую в компьютер. Данные поступают к еще одной микросхеме-контроллеру, установленной в мыши. Эта вторая «главная» микросхема в устройстве отвечает за реакцию на нажатие кнопок мыши, вращение колеса прокрутки и т.д. Данный чип, в том числе, уже непосредственно передает в ПК информацию о направлении перемещения мыши, конвертируя данные, поступающие с оптического сенсора, в передаваемые по интерфейсам PS/2 или USB сигналы. А уже компьютер, используя драйвер мыши, на основании поступившей по этим интерфейсам информации, перемещает курсор-указатель по экрану монитора.

Именно по причине наличия этой «второй» микросхемы-контроллера, точнее благодаря разным типам таких микросхем, довольно заметно отличались между собой уже первые модели оптических мышей. Если о дорогих устройствах от Microsoft и Logitech слишком плохо отозваться я не могу (хотя и они не были вовсе «безгрешны»), то масса появившихся вслед за ними недорогих манипуляторов вела себя не вполне адекватно. При движении этих мышей по обычным коврикам курсоры на экране совершали странные кульбиты, скакали чуть ли не на пол Рабочего стола, а иногда… иногда они даже отправлялись в самостоятельное путешествие по экрану, когда пользователь совершенно не трогал мышь. Доходило и до того, что мышь могла запросто выводить компьютер из режима ожидания, ошибочно регистрируя перемещение, когда манипулятор на самом деле никто не трогал.

Кстати, если вы до сих пор боретесь с подобной проблемой, то она решается одним махом вот так: выбираем Мой Компьютер > Свойства > Оборудование > Диспетчер устройств > выбираем установленную мышь > заходим в ее «Свойства» > в появившемся окне переходим на закладку «Управление электропитанием» и снимаем галочку с пункта «Разрешить устройству вывод компьютера из ждущего режима» (рис. 4). После этого мышь уже не сможет вывести компьютер из режима ожидания ни под каким предлогом, даже если вы будете пинать ее ногами:)

Итак, причина столь разительного отличия в поведении оптических мышей была вовсе не в «плохих» или «хороших» установленных сенсорах, как до сих пор думают многие. Не верьте, это не более чем бытующий миф. Или фантастика, если вам так больше нравится:) В ведущие себя совершенно по-разному мыши часто устанавливались совершенно одинаковые микросхемы оптических сенсоров (благо, моделей этих чипов было не так уж много, как мы увидим далее). Однако вот, благодаря несовершенным чипам контроллеров, устанавливаемых в оптические мыши, мы имели возможность сильно поругать первые поколения оптических грызунов.

Однако, мы несколько отвлеклись от темы. Возвращаемся. В целом система оптического слежения мышей, помимо микросхемы-сенсора, включает еще несколько базовых элементов. Конструкция включает держатель (Clip) в который устанавливаются светодиод (LED) и непосредственно сама микросхема сенсора (Sensor). Эта система элементов крепится на печатную плату (PCB), между которой и нижней поверхностью мыши (Base Plate) закрепляется пластиковый элемент (Lens), содержащий две линзы (о назначении которых было написано выше).

В собранном виде оптический элемент слежения выглядит как показано выше. Схема работы оптики этой системы представлена ниже.

Оптимальное расстояние от элемента Lens до отражающей поверхности под мышью должно попадать в диапазон от 2.3 до 2.5 мм. Это рекомендации производителя сенсоров. Вот вам и первая причина, почему оптические мыши плохо себя чувствуют «ползая» по оргстеклу на столе, всевозможным «полупрозрачным» коврикам и т. п. И не стоит клеить на оптические мыши «толстые» ножки, когда отваливаются или стираются старые. Мышь из-за чрезмерного «возвышения» над поверхностью может впадать в состояние ступора, когда «расшевелить» курсор после пребывания мыши в состоянии покоя становится довольно проблематично. Это не теоретические измышления, это личный опыт:)

Кстати, о проблеме долговечности оптических мышей. Помниться, некоторые их производители утверждали что, дескать «они будут служить вечно». Да надежность оптической системы слежения высока, она не идет ни в какое сравнение с оптомеханической. В то же время в оптических мышах остается много чисто механических элементов, подверженных износу точно так же, как и при господстве старой доброй «оптомеханики». Например, у моей старой оптической мыши стерлись и поотваливались ножки, сломалось колесо прокрутки (дважды, в последний раз безвозвратно:(), перетерся провод в соединительном кабеле, с манипулятора слезло покрытие корпуса… зато вот оптический сенсор нормально работает, как ни в чем не бывало. Исходя из этого, мы смело можем констатировать, что слухи о якобы впечатляющей долговечности оптических мышей не нашли своего подтверждения на практике. Да и зачем, скажите на милость, оптическим мышам «жить» слишком долго? Ведь на рынке постоянно появляются новые, более совершенные модели, созданные на новой элементной базе. Они заведомо совершеннее и удобнее в использовании. Прогресс, знаете ли, штука непрерывная. Каким он был в области эволюции интересующих нас оптических сенсоров, давайте сейчас и посмотрим.

Из истории мышиного зрения

Инженеры-разработчики компании Agilent Technologies, Inc. не зря едят свой хлеб. За пять лет оптические сенсоры этой компании претерпели существенные технологические усовершенствования и последние их модели обладают весьма впечатляющими характеристиками.

Но давайте обо всем по порядку. Первыми массово выпускаемыми оптическими сенсорами стали микросхемы HDNS-2000 (рис. 8). Эти сенсоры имели разрешение 400 cpi (counts per inch), то бишь точек (пикселей) на дюйм, и были рассчитаны на максимальную скорость перемещения мыши в 12 дюймов/с (около 30 см/с) при частоте осуществления снимков оптическим сенсором в 1500 кадров за секунду. Допустимое (с сохранением стабильной работы сенсора) ускорение при перемещении мыши «в рывке» для чипа HDNS-2000 - не более 0.15 g (примерно 1.5 м/с 2).

Затем на рынке появились микросхемы оптических сенсоров ADNS-2610 и ADNS-2620 . Оптический сенсор ADNS-2620 уже поддерживал программируемую частоту «съемки» поверхности под мышью, с частотой в 1500 либо 2300 снимков/с. Каждый снимок делался с разрешением 18х18 пикселей. Для сенсора максимальная рабочая скорость перемещения по прежнему была ограничена 12 дюймами в секунду, зато ограничение по допустимому ускорению возросло до 0.25 g, при частоте «фотографирования» поверхности в 1500 кадров/с. Данный чип (ADNS-2620) также имел всего 8 ножек, что позволило существенно сократить его размеры по сравнению с микросхемой ADNS-2610 (16 контактов), внешне похожей на HDNS-2000. В Agilent Technologies, Inc. задались целью «минимизировать» свои микросхемы, желая сделать последние компактнее, экономнее в энергопотреблении, а потому и удобнее для установки в «мобильные» и беспроводные манипуляторы.

Микросхема ADNS-2610 хотя и являлась «большим» аналогом 2620-й, но была лишена поддержки «продвинутого» режима 2300 снимков/с. Кроме того, этот вариант требовал 5В питания, тогда как чип ADNS-2620 обходился всего 3.3 В.

Вышедший вскоре чип ADNS-2051 представлял собой гораздо более мощное решение, чем микросхемы HDNS-2000 или ADNS-2610, хотя внешне (упаковкой) был также на них похож. Этот сенсор уже позволял программируемо управлять «разрешением» оптического датчика, изменяя таковое с 400 до 800 сpi. Вариант микросхемы также допускал регулировку частоты снимков поверхности, причем позволял менять ее в очень широком диапазоне: 500, 1000,1500, 2000 или 2300 снимков/с. А вот величина этих самых снимков составляла всего 16х16 пикселей. При 1500 снимках/с предельно допустимое ускорение мыши при «рывке» составляло по прежнему 0.15 g, максимально возможная скорость перемещения - 14 дюймов/с (т. е. 35.5 см/с). Данный чип был рассчитан на напряжение питания 5 В.

Сенсор ADNS-2030 разрабатывался для беспроводных устройств, а потому имел малое энергопотребление, требуя всего 3.3 В питания. Чип также поддерживал энергосберегающие функции, например функцию снижения потребления энергии при нахождении мыши в состоянии покоя (power conservation mode during times of no movement), переход в режим «сна», в том числе при подключении мыши по USB интерфейсу, и т.д.. Мышь, впрочем, могла работать и не в энергосберегающем режиме: значение «1» в бите Sleep одного из регистров чипа заставляло сенсор «всегда бодрствовать», а значение по умолчанию «0» соответствовало режиму работы микросхемы, когда по прошествии одной секунды, если мышь не перемещалась (точнее после получения 1500 совершенно одинаковых снимков поверхности) сенсор, напару с мышью, переходил в режим энергосбережения. Что касается остальных ключевых характеристик сенсора, то они не отличались от таковых у ADNS-2051: тот же 16-и контактный корпус, скорость перемещения до 14 дюймов/с при максимальном ускорении 0.15 g, программируемое разрешение 400 и 800 cpi соответственно, частоты осуществления снимков могли быть точно такими же, как и у вышерассмотренного варианта микросхемы.

Такими были первые оптические сенсоры. К сожалению, им были свойственны недостатки. Большой проблемой, возникающей при передвижением оптической мыши по поверхностям, особенно с повторяющимся мелким рисунком, являлось то, что процессор обработки изображений порой путал отдельные похожие участки монохромного изображения, получаемые сенсором и неверно определял направление перемещения мыши.

В итоге и курсор на экране перемещался не так, как требовалось. Указатель на экране даже становился способен на экспромт:) - на непредсказуемые перемещения в произвольном направлении. Кроме того, легко догадаться, что при слишком быстром перемещении мыши сенсор мог вообще утратить всякую «связь» между несколькими последующими снимками поверхности. Что порождало еще одну проблему: курсор при слишком резком перемещении мыши либо дергался на одном месте, либо происходили вообще «сверхъестественные»:) явления, например, с быстрым вращением окружающего мира в игрушках. Было совершенно ясно, что для человеческой руки ограничений в 12-14 дюймов/с по предельной скорости перемещения мыши явно мало. Также не вызывало сомнений, что 0.24 с (почти четверть секунды), отведенные для разгона мыши от 0 до 35.5 см/с (14 дюймов/с - предельная скорость) это очень большой промежуток времени, человек способен двигать кистью значительно быстрее. И потому при резких движениях мыши в динамичных игровых приложениях с оптическим манипулятором может придтись несладко…

Понимали это и в Agilent Technologies. Разработчики осознавали, что характеристики сенсоров надо кардинально улучшать. В своих изысканиях они придерживались простой, но правильной аксиомы: чем больше снимков в секунду сделает сенсор, тем меньше вероятность того, что он потеряет «след» перемещения мыши во время совершения пользователем компьютера резких телодвижений:)

Хотя, как мы видим из вышеизложенного, оптические сенсоры и развивались, постоянно выпускались новые решения, однако развитие в этой области можно смело назвать «очень постепенным». По большому счету, кардинальных изменений в свойствах сенсоров так и не происходило. Но техническому прогрессу в любой области порой свойственны резкие скачки. Случился такой «прорыв» и в области создания оптических сенсоров для мышей. Появление оптического сенсора ADNS-3060 можно считать действительно революционным!

Лучший из

Оптический сенсор ADNS-3060 , по сравнению со своими «предками», обладает поистине впечатляющим набором характеристик. Использование этой микросхемы, упакованной в корпус с 20-ю контактами, обеспечивает оптическим мышам невиданные ранее возможности. Допустимая максимальная скорость перемещения манипулятора выросла до 40 дюймов/с (то есть почти в 3 раза!), т.е. достигла «знаковой» скорости в 1 м/с. Это уже очень хорошо - вряд ли хоть один пользователь двигает мышь с превышающей данное ограничение скоростью столь часто, чтобы постоянно чувствовать дискомфорт от использования оптического манипулятора, в том числе это касается и игровых приложений. Допустимое же ускорение выросло, страшно сказать, во сто раз (!), и достигло величины 15 g (почти 150 м/с 2). Теперь на разгон мыши с 0 до предельных 1 м/с пользователю отводится 7 сотых секунды - думаю, теперь очень немногие сумеют превзойти это ограничение, да и то, вероятно, в мечтах:) Программируемая скорость осуществления снимков поверхности оптическим сенсором у новой модели чипа превышает 6400 кадров/с, т.е. «бьет» предыдущий «рекорд» почти в три раза. Причем чип ADNS-3060 может сам осуществлять подстройку частоты следования снимков для достижения наиболее оптимальных параметров работы, в зависимости от поверхности, над которой перемещается мышь. «Разрешение» оптического сенсора по прежнему может составлять 400 или 800 cpi. Давайте на примере микросхемы ADNS-3060 рассмотрим общие принципы работы именно чипов оптических сенсоров.

Общая схема анализа перемещений мыши не изменилась по сравнению с более ранними моделями - полученные блоком IAS сенсора микроснимки поверхности под мышью обрабатываются затем интегрированным в этой же микросхеме DSP (процессором), который определяет направление и дистанцию перемещения манипулятора. DSP вычисляет относительные величины смещения по координатам × и Y, относительно исходной позиции мыши. Затем внешняя микросхема контролера мыши (для чего он нужен, мы говорили ранее) считывает информацию о перемещении манипулятора с последовательного порта микросхемы оптического сенсора. Затем уже этот внешний контроллер транслирует полученные данные о направлении и скорости перемещения мыши в передаваемые по стандартным интерфейсам PS/2 или USB сигналы, которые уже от него поступают к компьютеру.

Но вникнем чуть глубже в особенности работы сенсора. Блок-схема чипа ADNS-3060 представлена выше. Как видим, принципиально его структура не изменилась, по сравнению с далекими «предками». 3.3 В питание к сенсору поступает через блок Voltage Regulator And Power Control, на этот же блок возложена функции фильтрации напряжения, для чего используется подключение к внешнему конденсатору. Поступающий с внешнего кварцевого резонатора в блок Oscillator сигнал(номинальная частота которого 24 МГц, для предыдущих моделей микросхем использовались более низкочастотные задающие генераторы) служит для синхронизации всех вычислительных процессов, протекающих внутри микросхемы оптического сенсора. Например, частота снимков оптического сенсора привязана к частоте этого внешнего генератора (кстати, на последний наложены не весьма жесткие ограничения по допустимым отклонениям от номинальной частоты - до +/- 1 МГц). В зависимости от значения, занесенного по определенному адресу (регистру) памяти чипа, возможны следующие рабочие частоты осуществления снимков сенсором ADNS-3060.

Значение регистра, шестнадцатеричное Десятичное значение Частота снимков сенсора, кадров/с
OE7E 3710 6469
12C0 4800 5000
1F40 8000 3000
2EE0 12000 2000
3E80 16000 1500
BB80 48000 500

Как нетрудно догадаться, исходя из данных в таблице, определение частоты снимков сенсора осуществляется по простой формуле: Частота кадров = (Задающая частота генератора (24 МГц)/Значение регистра отвечающего за частоту кадров).

Осуществляемые сенсором ADNS-3060 снимки поверхности (кадры) имеют разрешение 30х30 и представляют собой все ту же матрицу пикселей, цвет каждого из которых закодирован 8-ю битами, т.е. одним байтом (соответствует 256 градациям серого для каждого пикселя). Таким образом, каждый поступающий в DSP процессор кадр (фрейм) представляет собой последовательность из 900 байт данных. Но «хитрый» процессор не обрабатывает эти 900 байт кадра сразу по поступлении, он ждет, пока в соответствующем буфере (памяти) накопится 1536 байт сведений о пикселях (то есть добавится информация еще о 2/3 последующего кадра). И только после этого чип приступает к анализу информации о перемещении манипулятора, путем сравнения изменений в последовательных снимках поверхности.

С разрешением 400 или 800 пикселей на дюйм их осуществлять, указывается в бите RES регистров памяти микроконтроллера. Нулевое значение этого бита соответствует 400 cpi, а логическая единица в RES переводит сенсор в режим 800 cpi.

После того как интегрированный DSP процессор обработает данные снимков, он вычисляет относительные значения смещения манипулятора вдоль осей × и Y, занося конкретные данные об этом в память микросхемы ADNS-3060. В свою очередь микросхема внешнего контроллера (мыши) через Serial Port может «черпать» эти сведения из памяти оптического сенсора с частой примерно раз в миллисекунду. Заметьте, только внешний микроконтроллер может инициализировать передачу таких данных, сам оптический сенсор никогда не инициирует такую передачу. Поэтому вопрос оперативности (частоты) слежения за перемещением мыши во многом лежит на «плечах» микросхемы внешнего контроллера. Данные от оптического сенсора передаются пакетами по 56 бит.

Ну а блок Led Cотtrоl, которым оборудован сенсор, ответственен за управление диодом подсветки - путем изменения значения бита 6 (LED_MODE) по адресу 0x0a микропроцессор оптосенсора может переводить светодиод в два режима работы: логический «0» соответствует состоянию «диод всегда включен», логическая «1» переводит диод в режим «включен только при необходимости». Это важно, скажем, при работе беспроводных мышей, так как позволяет экономить заряд их автономных источников питания. Кроме того, сам диод может иметь несколько режимов яркости свечения.

На этом, собственно, все с базовыми принципами работы оптического сенсора. Что еще можно добавить? Рекомендуемая рабочая температура микросхемы ADNS-3060, впрочем как и всех остальных чипов этого рода, - от 0 0С до +40 0С. Хотя сохранение рабочих свойств своих чипов Agilent Technologies гарантирует в диапазоне температур от -40 до +85 °С.

Лазерное будущее?

Недавно сеть наполнили хвалебные статьи о мыши Logitech MX1000 Laser Cordless Mouse, в которой для подсветки поверхности под мышью использовался инфракрасный лазер. Обещалась чуть ли не революция в сфере оптических мышей. Увы, лично попользовавшись этой мышью, я убедился, что революции не произошло. Но речь не об этом.

Я не разбирал мышь Logitech MX1000 (не имел возможности), но уверен, что за «новой революционной лазерной технологией» стоит наш старый знакомый - сенсор ADNS-3060. Ибо, по имеющимся у меня сведениям, характеристики сенсора этой мыши ничем не отличаются от таковых у, скажем, модели Logitech МХ510 . Вся «шумиха» возникла вокруг утверждения на сайте компании Logitech о том, что с помощью лазерной системы оптического слежения выявляется в двадцать раз (!) больше деталей, чем с помощью светодиодной технологии. На этой почве даже некоторые уважаемые сайты опубликовали фотографии неких поверхностей, дескать, как видят их обычные светодиодные и лазерные мыши:)

Конечно, эти фото (и на том спасибо) были не теми разноцветными яркими цветочками, с помощью которых нас пыталась убедить на сайте Logitech в превосходстве лазерной подсветки системы оптического слежения. Нет, конечно же, оптические мыши не стали «видеть» ничего подобного на приведенные цветные фотографии с разной степенью детализации - сенсоры по-прежнему «фотографируют» не более чем квадратную матрицу серых пикселей, отличающихся между собой лишь разной яркостью (обработка информации о расширенной цветовой палитре пикселей непомерным грузом легла бы на DSP).

Давайте прикинем, для получения в 20 раз более детализированной картинки, нужно, извините за тавтологию, в двадцать раз больше деталей, передать которые могут только дополнительные пиксели изображения, и ни что иное. Известно, что Logitech MX 1000 Laser Cordless Mouse делает снимки 30х30 пикселей и имеет предельное разрешение 800 cpi. Следовательно, ни о каком двадцатикратном росте детализации снимков речи быть не может. Где же собака порылась:), и не являются ли подобные утверждения вообще голословными? Давайте попробуем разобраться, что послужило причиной появления подобного рода информации.

Как известно, лазер излучает узконаправленный (с малым расхождением) пучок света. Следовательно, освещенность поверхности под мышью при применении лазера гораздо лучше, чем при использовании светодиода. Лазер, работающий в инфракрасном диапазоне, был выбран, вероятно, чтобы не слепить глаза возможным все-таки отражением света из-под мыши в видимом спектре. То, что оптический сенсор нормально работает в инфракрасном диапазоне не должно удивлять - от красного диапазона спектра, в котором работает большинство светодиодных оптических мышей, до инфракрасного -«рукой подать», и вряд ли для сенсора переход на новый оптический диапазон был труден. Например, в манипуляторе Logitech MediaPlay используется светодиод, однако также дающий инфракрасную подсветку. Нынешние сенсоры без проблем работают даже с голубым светом (существуют манипуляторы и с такой подсветкой), так что спектр области освещения - для сенсоров не проблема. Так вот, благодаря более сильной освещенности поверхности под мышью, мы вправе предположить, что разница между местами, поглощающими излучение (темными) и отражающими лучи (светлыми) будет более значительной, чем при использовании обычного светодиода - т.е. изображение будет более контрастными.

И действительно, если мы посмотрим на реальные снимки поверхности, сделанные обычной светодиодной оптической системой, и системой с использованием лазера, то увидим, что «лазерный» вариант куда более контрастен - отличия между темными и яркими участками снимка более значительны. Безусловно, это может существенно облегчить работу оптическому сенсору и, возможно, будущее именно за мышами с лазерной системой подсветки. Но назвать подобные «лазерные» снимки в двадцать раз более детализированными вряд ли можно. Так что это еще один «новорожденный» миф.

Какими будут оптические сенсоры ближайшего будущего? Сказать трудно. Вероятно, они перейдут таки на лазерную подсветку, а в Сети уже ходят слухи о разрабатываемом сенсоре с «разрешением» 1600 cpi. Нам остается только ждать.

Какая мышка лучше: светодиодная или лазерная?

в линейке производителя logitech, грубо говоря, можно поделить на 2 половины: или или . Можно конечно возразить? что есть еще и , но ими пользуются по большей части гурманы).

Отличия есть, все они имеют место, если вы точно знаете что хотите от "грызуна"
Расскажем подробнее:

1. Подсветка красного цвета. Самое простое и наглядное отличие, это красная подсветка у . Второе название у светодиодного датчика- это оптический. Из этого следует, что светодиодная мышка и оптическая мышка это одно и то же.
Лазерная мышка не имет видимой подсветки.

У других производителей иногда встречается подсветка синего и зеленого цвета. В основном это мышки Microsoft BlueTrack

Оптическая мышка Лазерная мышка

2. Высокое разрешение. Чем больше разрешение, тем чувствительнее мышка к перемещению. Меньше движения по столу- больше движения на экране. Максимальное разрешение оптической мышки на сегодняшний день 1800 dpi. А для лазерной мышки максимальное разрешение 12 000 dpi!

Для чего нужно большое разрешение мышки? Для компьютерных игр. Высокий показатель dpi дает возможность прицелиться с высокой точностью, поворачиваться и делать точные прыжки. Конечно лучше использовать с игровой поверхностью Logitech в тандеме!

3. Глянцевые поверхности. Оптические мышки не очень хорошо работают на глянцевых и зеркальных поверхностях. Если у вас стеклянный стол, то нужно использовать или оптическую мышку с ковриком или лазерную мышку Logitech. Рекомендуем для стеклянных поверхностей выбирать мышки Logitech Performance MX и

4. Возможность переключать разрешение. Управлять разрешением мышки можно у игровых лазерных мышек, у оптических опция изменения разрешения не доступна.

5. Бюджет. Технология оптического сенсора более старая и цена ее ниже. По этому если выбирать по цене, то оптическая мышка .

Компьютерная мышь - неотъемлемая часть современных девайсов. Изобретена она была ещё в 1936 году, с тех пор только совершенствовалась и видоизменялась. Сейчас популярны мыши оптические и лазерные. У пользователей возникает вопрос: какая же из них лучше? Необходимо разобраться, что их отличает друг от друга.

Устройство мыши

В современной компьютерной мышке есть небольшая видеокамера , стремительно делающая снимки и передающая данные на процессор. Тот в свою очередь молниеносно определяет координаты движения манипулятора. Для подсвечивания снимков используются разные технологии:

  • в оптическом девайсе работает светодиод, передающий информацию через сенсор процессору;
  • в лазерном манипуляторе функцию подсветки выполняет лазер, передающий тончайший луч через сенсор на процессор.

На корпусе оптической мышки располагаются три кнопки и колесо . Существуют модели с дополнительными кнопками, выполняющими разные функции.

Лазерная мышка обладает рядом характеристик и возможностей. Многие из них очень удобны и влияют на скорость при работе.

Разрешение и скорость

Разрешающая способность девайса обозначается аббревиатурой dpi. Чем выше эта способность, тем чувствительнее техника. Стандартному компьютеру хватает 800 dpi, то есть подходит обычный оптический манипулятор. У лазерной мышки разрешение выше. Она полезна тем, кто предпочитает виртуальные игры или занимается профессиональным компьютерным дизайном.

Оптические девайсы обладают разрешением 800-1200 dpi , лазерные - 2000-5700 dpi . Причём у лазерных этот показатель можно регулировать с целью экономии электроэнергии.

Оптическая мышка чаще всего не имеет данных о скорости её передвижения.

Полупроводниковый лазер излучает инфракрасный свет и считается очень точным. Информация при этом считывается качественно, скорость увеличивается. Присутствуют данные об ускорении передвижения. Показатели процессора должны соотноситься с характеристиками сенсора.

Темп работы и точность актуальна для игровой деятельности и дизайна в сфере графики. По этой причине для игры и дизайна больше подходят мышки с лазером.

Энергозатраты и стоимость

Лазерная мышь требует меньше энергии для своей работы, нежели оптическая светодиодная. Это имеет значение для беспроводных мышей, поскольку вопрос энергозатратности батареек и аккумуляторов встаёт достаточно остро. Для проводных мышек такой вопрос не актуален. Беспроводная лазерная мышка прослужит в 10 раз дольше оптической.

Более низкую цену имеет оптическая мышь. Она стоит от 200 рублей. Лазерные устройства дороже. Их цена укладывается в диапазон от 600 до 5000 рублей.

Рабочая поверхность

Как правило, светодиодные мыши не требуют коврика , они могут функционировать на разных поверхностях. Затруднить деятельность мыши могут стеклянные, прозрачные и лакированные покрытия. В этом случае коврик очень нужен, иначе работа мыши будет сопровождаться постоянными сбоями. Отлично мышь работает на любых видах тканевых покрытий.

Лазерная подсветка в коврике не нуждается, она воспринимает любую поверхность одинаково хорошо . Однако лазерная мышь требует полного контакта с поверхностью. Наличие минимальной неровности может затруднить работу мыши. Светодиодный девайс не столь чувствителен к неровной поверхности и с легкостью работает даже на коленях.

Подсветка

Оптическое устройство светится ярко-красным, синим или зелёным светом . Свечение сохраняется даже при выключении компьютера. Это неприятно для многих пользователей. Ночью такая подсветка может беспокоить и мешать уснуть.

Лазерные конструкции лишены свечения, они излучают невидимые инфракрасные лучи . Поэтому по ночам такой девайс не будет беспокоить своего владельца.

Все остальные характеристики компьютерного манипулятора индивидуальны и определяются скорее человеческим вкусом, нежели точной технической оценкой.

Преимущества и недостатки оптической мыши

Светодиодная (оптическая) мышь обладает такими достоинствами:

  • невысокая стоимость;
  • нечувствительность к неровной поверхности.

Минусы девайса:

  • не любит зеркальных, стеклянных покрытий;
  • имеет малую точность и скорость;
  • низкая чувствительность;
  • раздражающая подсветка;
  • значительное энергопотребление.

Плюсы и минусы лазерной мышки

Достоинства лазерного устройства:

  • возможность выполнения функций на любом покрытии;
  • повышенные точность и скорость;
  • значительная чувствительность;
  • регулировка разрешения;
  • нет подсветки;
  • малая энергозатратность;
  • дополнительные возможности.

Минусы:

  • дороговизна;
  • чувствительность к неровности поверхностей.

Какой же манипулятор лучше приобретать? Конечно, по своим характеристикам лазерные мыши превосходят оптические . Тем не менее оптические хорошо справляются со своей работой, хотя и имеют более скромные возможности.

Если пользователь занимается профессиональной игровой деятельностью или дизайном, затраты на дорогую лазерную беспроводную мышку у него быстро окупятся. Если же пользователь - обычный офисный работник, разницу между девайсами он может и не заметить, поскольку большинство функций лазерной мышки будут не задействованы.

Если принципиальна конструкция без проводов, в таком случае лучше выбирать лазерную. Она дольше держит заряд и поможет экономить на батарейках.

При покупке многие пользователи обращают внимание на внешний вид и эргономичность мыши. Конечно, это их право, ведь наслаждаться удобной красивой мышкой гораздо приятнее, нежели неприглядной.

Понравилась статья? Поделитесь с друзьями!